Radial piston pumps type R and RG

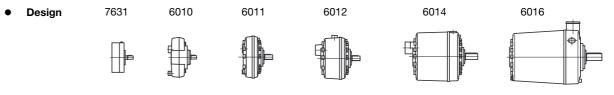
Operating pressure p _{max}	= 700 bar	Motor pumps and hydraulic power packs type R and RG	D 6010 H
Delivery flow Q _{max}	= 91.2 lpm (at 1450 rpm)	Hydraulic power packs type R and RG with DC-drive motor	D 6010 HDC
Geometric displacement V _{g ma}	_{ax} = 64.2 cm ³ /rev.	Radial piston pumps type R and RG with several pressure outlets	D 6010 D
		Hydraulic power packs type R and RG with several pressure outlets	D 6010 DB
		Radial piston pumps type R and RG with one main and one or two auxiliary outlets	D 6010 S

1. General

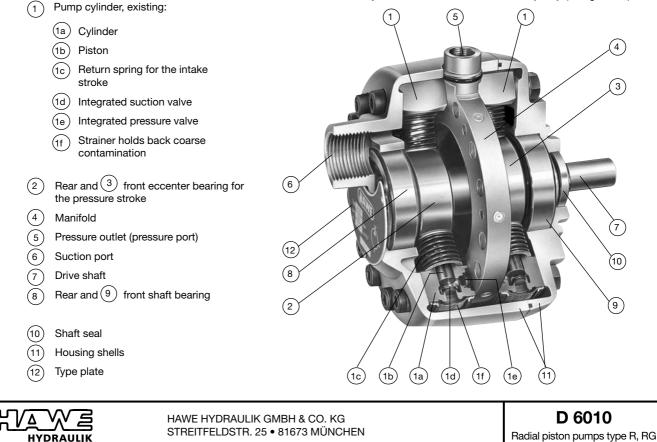
Hydraulic pumps apply the displacement principle for converting mechanical into hydrostatic energy (DIN ISO 1219-1). The pumps described in this pamphlet are constant delivery pumps.

Application

These pumps serve generally to supply pressuriced fluid to hydraulic consumers in hydraulic systems. The maximum permissible drive power is 30 kW, depending on size.


Basic types (bearing design)

R - Traditional version, where the eccenter is a roller bearing, suited even for very low speed ratings


RG - New version, where the eccenter is a slide bearing, suited for fluids with bad lubrication characteristic (e.g. HFC) but not for low revolution ratings as this would prevent the generation of the necessary lubricating film.

Mechanical design

Radial piston pumps are valve controlled with cylinders in a radial arrangement. The cylinder radials in one, two or several superimposed layers (stars) are driven by bearings fitted eccentrically on the drive shaft (piston pressure stroke), then being returned to their idle position by springs (piston intake stroke). The fluid being delivered by the various cylinders is collected via manifolds feeding one joint pressure port. The pump housing shells are load-bearing elements supporting the cylinders and shaft bearings. The pumps run very smoothly as the drive shaft is statically balanced via counter weights. With the exception of the single- and double-cylinder pumps, there is always an uneven number of pistons per cylinder radial, which minimizes any pulse effect on the pump delivery.

Cut-away demonstrator of double radial pump (Design 6012)

February 2000-04

2. Available versions, main data R 5,8 ... - PYD Order example: Table 3: Seals Table 1a: No NBR (standard) Basic type coding, coding see also sect. 1 PYD FKM seals (Viton) Standard, roller beaing R AT EPDM seals version RG Slide bearing version 4) Table 2: Versions No coding Standard Arrangement of the shaft seals e.g. R 3,6A (see description in Α sect. 5.2 on page 6 н Hollow shaft (only avail. for design 7631) Version for water based fluids; only avail. for design 6010 to 6016 **HFA** and piston diameter 6, 7, 8, 10, and 12. Type RG should be used, see also note "Pressure fluids" in sect. 3. Table 1b: Delivery flow coding Design Num- Delivery flow coding (quideline figure O in (lpm) at 1450 rpm) Drive

Design, Num- cylinder ber of		Delivery flow coding (guideline figure Q in (lpm) at 1450 rpm) Figures in brackets show the geometric displacement (cm ³ /rev.) Piston diameter (mm)												Drive power (stan- dard
arrangement pump cylin- ders														
	ders	4	5	6	7	8	9	10	12	13	14	15	16	motor)
	Max. permissible operating pressure p _{max} (bar) ¹)											(kW) ²)		
		700 55	550	700	600	550	250	450	350	300	250	200	160	(KVV) -)
				(450) ³)	(350) ³)	(300) ³)								
Design 2 7631 2 2-, 3- and 3 5-cylinder 3 pump 5	2	0,18	0,28	0,43	0,56	0,73	0,92							0.25 to
	_	(0.13)	(0.20)	(0.28)	(0.38)	(0.50)	(0.64)							0.55
	3	0,27	0,42	0,64	0,81	1,1	1,35							0.25 to
	5	(0.19)	(0.29)	(0.42)	(0.58)	(0.75)	(0.95)							0.75
	5	0,46	0,7	1,08	1,39	1,77	2,27							0.25 to
	5	(0.31)	(0.49)	(0.71)	(0.96)	(1.26)	(1.59)							1.1
Design ₁	1			0,3	0,41	0,5		0,8	1,2	1,45	1,7	1,9	2,2	
6010 1- and 2-				(0.21)	(0.29)	(0.38)		(0.60)	(0.86)	(1.01)	(1.17)	(1.34)	(1.53)	0.25
cylinder pump	2			0,6	0,83	1,0		1,6	2,4	2,8	3,3	3,8	4,4	to 2.2
-)				(0.43)	(0.58)	(0.76)		(1.19)	(1.72)	(2.02)	(2.34)	(2.69)	(3.06)	
Design 5010 3	3			0,9	1,25	1,5		2,5	3,6	4,3	5,1	5,6	6,5	0.25
3-cylinder pump				(0.64)	(0.88)	(1.15)		(1.79)	(2.58)	(3.03)	(3.51)	(4.03)	(4.58)	to 3
Design 5	5			1,4	2,08	2,6		4,2	6,0	7,0	8,3	9,5	10,9	0.25
6011				(1.07)	(1.46)	(1.91)		(2.98)	(4.30)	(5.04)	(5.85)	(6.72)	(7.64)	to 4
1-radial pump	7			2,1	2,9	3,7		5,8	8,4	9,8	11,8	13,3	15,3	0.55
				(1.50)	(2.05)	(2.67)		(4.18)	(6.02)	(7.06)	(8.19)	(9.40)	(10.70)	to 5.5
6012	pump 10			2,7	4,15	5,3		8,2	12,0	14,2	16,8	19,3	21,7	2.2 to
				(2.15)	(2.92)	(3.82)		(5.97)	(8.60)	(10.09)	(11.70)	(13.43)	(15.28)	7.5 (9)
2-radial pump				4,0	5,85	7,4		11,6	17,0	20,0	23,5	26,5	30,4	2.2
				(3.01)	(4.09)	(5.35)		(8.36)	(12.03)	(14.12)	(16.38)	(18.80)	(21.39)	to 11
Design	20			25,0	30,0	35,0	38,0	43,4	5.5 to					
6014				(4.30)	(5.85)	(7.64)		(11.94)	(17.19)	(20.18)	(23.40)	(26.86)	(30.56)	18.5
4-radial pump	28			8,0 (6.02)	11,65 (8.19)	15,0 (10.70)		23,0 (16.71)	34,0 (24.07)	40,0 (28.24)	47,0 (32.76)	53,0 (37.60)	60,8 (42.79)	5.5 to 22
Design 6016 6-radial pump	42			12,7	17,45	22,0		34,5	51,0	60,0	70,0	80,0	91,2	11
	-7 L			(9.03)	(12.28)	(16.04)		(25.07)	(36.10)	(42.37)	(49.14)	(56.41)	(64.18)	to 30

 The operating pressure should be restricted for applications with continuous operation where the subsequent load cycles are all at the upper end of the pressure range (>75%) e.g. accumulator charging etc. It is advisable for an economic service life of the bearings to restrict the operating pressure of the respective pump element diameter to

It is advisable for an economic service life of the bearings to restrict the operating pressure of the respective pump element diameter to about 75% of its original specification. Another pump with smaller but more pump elements should be selected, if this is not possible.

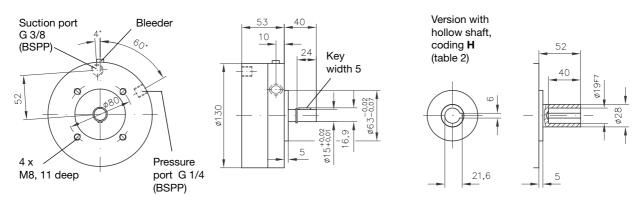
 $^{\rm 2}\)$ For ancillary parts, like bellhousings, flex-couplings etc., see D 6010 H

³) Figures in brackets apply to design 7631

4) Type RG not available for design 7631

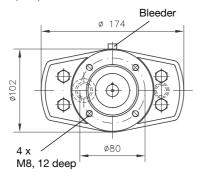
3. Further characteristic data

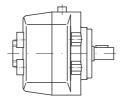
Namanalatur														
Nomenclature	Radial piston pump,	, consta	nt deli	very pur	ıp									
Type of fastening	Via the flange at the	drive sh	naft sie	de										
Hydraulic connection	Via fittings DIN ISO	228/1 (E	BSPP);	For port	size,	see di	mensi	onal d	rawing	s in se	ect. 4			
Drive and direction of rotation	Via flex-coupling; direction of rotation as desired, see also "Direction of flow"													
Drive speed range	100 2000 rpm (continuous) 2800 rpm admissible for brief periods; note in this case that bellhousings, flex-couplings, etc. (D 6010 H) are available only for industrial standard motor sizes 71 to 200 L. The output gen- erated by such motors (DIN 42 677) may require a reduction of the maximum pressure rating as the delivery flow will twice of the one stated in "Delivery flow" (sect.2).													
Installed position	See sect. 5, any angle between horizontal and vertical													
Direction of flow	Determined by intake and pressure port, independent of the direction of m										n			
Operating pressure	Pressure side: Suction side: Depending on piston diameter, see sect. 2 - 0.3 bar + 1 bar (ca. 0.7 bar abs ca. 2 bar abs.) + 2 bar (3 bar abs.) with type R(G)A Observe note in sect. 5.2 !													
Delivery flow	See delivery flow coding in sect. 2 Guideline depending on speed													
	$Q_{Pu} = V_a n \eta_{vol} \cdot 10^{-1}$	⁻³ lpm												
	With: V _{geo} in	cm ³ /rev	. Del	very flow	, sect	. 2								
	With: V _{geo} in cm ³ /rev. Delivery flow, sect. 2 n in rpm Speed													
	$\begin{array}{ll} \eta_{vol}\approx 0.98 & \mbox{Volumetric efficiency} \\ \mbox{Attention: The conditions listed below may cause reduced efficiency:} \\ - \mbox{Viscosities} > 500 \ \mbox{mm}^2/\mbox{s and} < 10 \ \mbox{mm}^2/\mbox{s} \\ - \mbox{Operating pressure} < 20 \ \mbox{bar} \\ - \mbox{Speed} > 2000 \ \mbox{rpm; especially with small piston-} \end{tabular}$													
Mass (weight)	Design	7631		6010		6011		6012		6	014	6016		
	No. of cylinders 2		5	1 and 2	3	5	7	10	14	20	28	42		
	approx. (kg) 3		3.2		3.1	5.0		8.7	10.5					
Temperature:	 10 68 mm²/s at 40°C (ISO VG 10 to 68 conf. DIN Viscosity range: 10 to 500 mm²/s Viscosity limits (start viscosity): Type R 0,18 R 2,27: min. approx. 4; max. approx R 0,3 R 91,2: min. approx. 4; max. approx Also suitable are biologically degradable pressure HEES (synth. Ester) at operation temperatures up to Version type RHFA is also suited for water based pr abilities prevent their use above approx. 75% of the n Ambient: approx40+80°C 								rox. 800 mm ² /s } see also note at rox. 1500 mm ² /s } "Delivery flow" e fluids type HEPG (Polyalkylenglykol) a to approx. +70°C. pressure fluids, but their restricted lubricati					
	Fluid: -25+80°C, p	oay atter	ntion t											
	Start temperature do as long as the opera ical degradable pres compatibility with se	ation ten ssure flu	40°C a nperat ids: Pa	re allowa ure durin ay attenti	ble (P g sub on to	ay atte seque manuf	ntion 1 nt run acture	ning is	at leas	st 20K	highe	r. Biolo		
Power consumption	as long as the operatical degradable pres	ation ten ssure flu ealing m	40°C a nperat ids: Pa ateria	re allowa ure durin ay attenti Is do not	ble (P g sub on to excee	ay atte seque manuf ed +70	ntion f nt run acture °C.	ning is er's info	at leas	st 20K	highe	r. Biolo		
Power consumption	as long as the opera- ical degradable pres- compatibility with set $P_{kW} = \frac{p_{bar} Q_{lpm} c}{600 \eta_T} / 4$ Abbreviations: $P_{kW} = Required pressure of the set of the set$	ation ten ssure flu ealing m Approxii power a	40°C a nperat ids: Pa ateria mate f	re allowa ure durin ay attenti Is do not igure cor pump driv	ble (P g sub on to excee	ay atte seque manuf ed +70	ntion f nt run acture °C. Ila app	ning is er's info	at leas	st 20K	highe	r. Biolo		
Power consumption	as long as the opera- ical degradable pres- compatibility with set $P_{kW} = \frac{p_{bar} Q_{lpm} c}{600 \eta_T} V$ Abbreviations:	ation ten ssure flu ealing m Approxi power a pressur	40°C a nperat ids: Pa ateria mate f t the p e in ba	re allowa ure durin ay attenti is do not igure cor oump driv ar	ble (Pa g sub on to excee nmon	ay atte seque manuf ed +70	ntion f nt run acture °C. Ila app	ning is er's info	at leas	st 20K	highe	r. Biolo		
Power consumption	as long as the opera- ical degradable pres- compatibility with set $P_{kW} = \frac{P_{bar} Q_{lpm} c}{600 \eta_T} / 4$ Abbreviations: $P_{kW} = Required p_{bar}$ $P_{bar} = Exploited$	Ation ten ssure flu ealing m Approxin power a pressur r pressur ow in Ip g speed al factor linders: pump:	40°C a nperat ids: Pa ateria mate f t the p e in ba ure + b m, at rating which c c	re allowa ure durin ay attenti s do not igure cor oump driv ar ack pres 1450 rpm Is n _x in Q	ble (P. g sub on to excee nmon ve sha sure) i, see lpm, di e puls .5	ay atte seque manuf ed +70 formu aft in k deliver elivery sation	ntion f nt run acture °C. Ila app Ila app N V flow of flow of flow of flow of	ning is er's info olying coding pump	at leas ormatio	st 20K on. Wi sect. 2 vlied w	thighe th reg vith n _x t	r. Biolo ard to th / 1450		


4. Dimensions

4.1. Hydraulic pumps

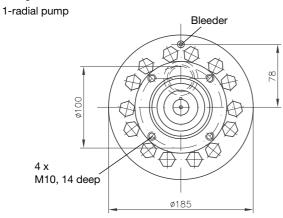
All dimensions in mm, subject to change without notice!

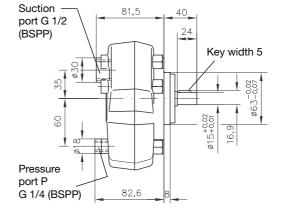

Design 7631

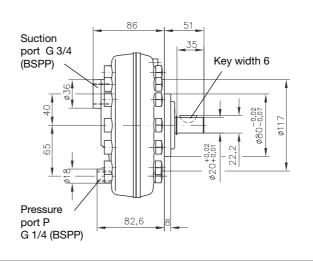

2-, 3-, and 5-cylinder pumps

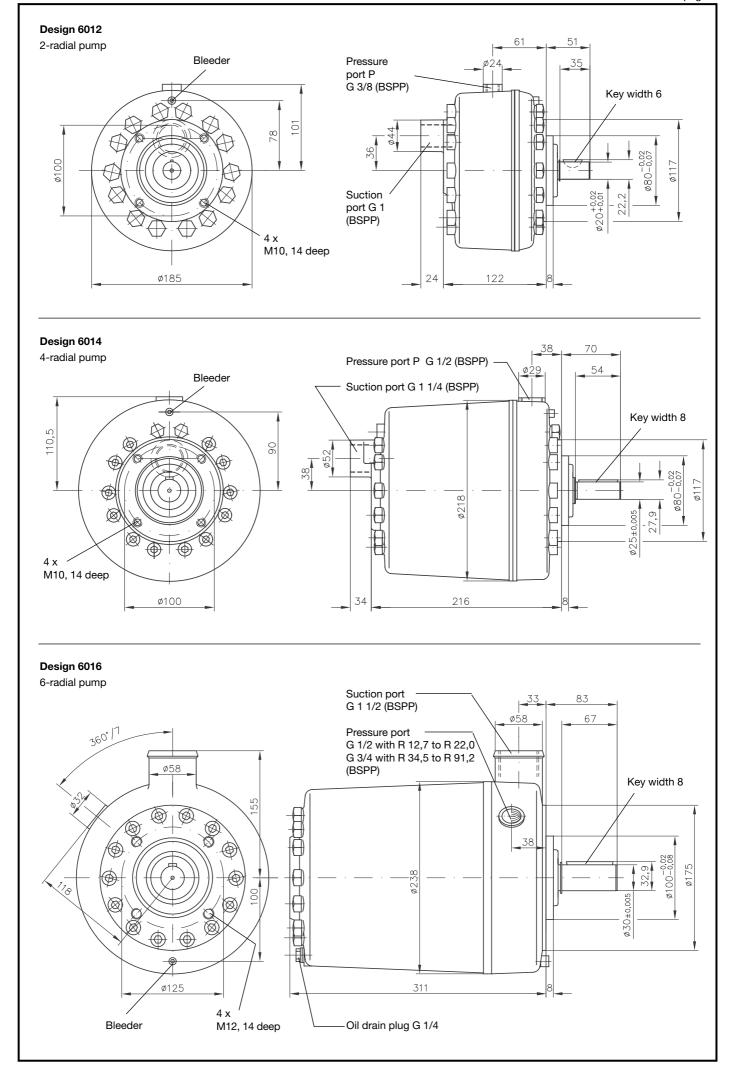
Design 6010

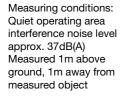
1- and 2-cylinder pump



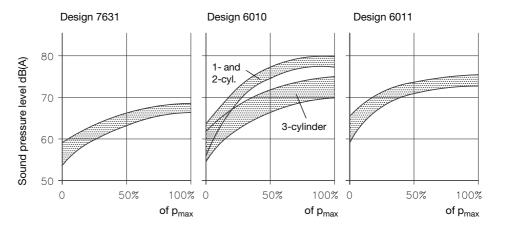

For missing dimensions, see 3-cylinder pump below !


3-cylinder pump


Design 6011


D 6010 page 5

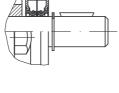
The pump must always be located below the anticipated minimum fluid level during operation no matter whether the pump is installed inside the tank (hydraulic power packs) or outside (motor pump). The housing shell forms a complete, self-contained unit around the cylinders radials, and can be only properly bled (after a refill) if it is completely immersed in the fluid. For a detailed description of installation, bleeding and initial operation, see sect. 5 in D 6010 H.


5.1. **Running noise**

The noise level curves shown here present the results of practical measurements in a test area, making allowance for any deviation of the noise levels measured. Pumps with a small delivery flow (small piston diameter) within each group will generally provide results shown by the lower curve, pumps with a larger delivery flow (13-16 mm piston diameter) will generally be in the middle or top of the range shown.

Measuring unit: Precision sound level meter DIN IEC 651 KI. I

Viscosity of oil during measurement: approx. 50 mm²/s



5.2. Slightly charged pumps (above approx. 0.4 ... 0.5 bar)

Standard: Sealing lips facing towards each otherno suffix

Version R .. A : Sealing lips facing to the inside, for intake pressure exceeding approx. 0.4 bar

quent shaft seals. The sealing lips of these seal rings face towards each other with standard applications. This is advantageous as it prevents air entering during the intake (vacuum in the pump housing) and no fluid can escape even if the fluid level is located higher than the suction port (slight overpressure in the pump housing, due to the weight of the oil column).

The drive shaft is sealed to the outside on the shaft journal by two subse-

The pumps are also available with both sealing lips facing to the inside advisable for conditions where the tank is located much higher than the pump (i.e. several meters) or a tank is permanently pressurized (p_s > 0.4 bar). Please note, however, that any charge pressure above 1 bar (2 ... 3 bar is still

admissible) may considerably reduce the service life of the sealing lips. It is therefore only acceptable, when the pump stands still for prolonged periods between operation.